
ArchiMate to UML mapping Page 1

ArchiMate to UML mapping

Thomas Gericke

Adocus AB, Stockholm, Sweden

thomas.gericke@adocus.com

Abstract: ArchiMate is a notation for enterprise architecture modeling and its

use and popularity is on the rise. However, the more technically oriented mod-

eling notation UML is used as a base in most available modeling tools and

UML is also needed for more detailed type of models. To make use of existing

modeling tools and for ArchiMate be able to co-exist with other types of models

based upon UML there is a need to understand the relationship between Archi-

Mate and UML. This paper offers one possible and well-founded proposition

for a mapping between ArchiMate and UML.

Keywords: ArchiMate, UML, Enterprise Architecture, Modeling.

1 Introduction

ArchiMate
®
 is an enterprise architecture modeling notation from The Open

Group
®
. Enterprise architecture is the top-most architecture as it documents the stra-

tegic development intent for whole organizations including all different kinds of sub

architectures in that organization, for example business models, application models as

well as infrastructure models. The notation ArchiMate is closely related to the widely

spread enterprise architecture framework TOGAF, also managed by The Open Group.

Having said that enterprise architecture is strategic in nature, this also means that it

is “high level”, broad and less deep in nature. The depth/details need to be document-

ed in other types of models and notations such as UML, BPMN etc.

Since UML is the largest existing modeling notation there is, and strategic models

should be detailed into other types of models/notations, there is a need to be able to

make ArchiMate and UML co-exist and relate to each other. To do this, we need to be

able to have ArchiMate and UML in the same modeling tools and that often means

that we need to build other modeling notations upon UML which is so widely used in

modeling tools today. To be able to build ArchiMate upon UML we need to know the

actual relationship between the constituents of both modeling notations – there are a

lot of similarities since ArchiMate is influenced by UML, but there are some differ-

ences as well.

This paper documents findings and challenges when mapping ArchiMate, version

2.1, to UML 2.5 after an in-depth investigation made when an ArchiMate DSML-

extension was created for the open source Papyrus modeling tool.

2 Goals with the mapping

The goal with the mapping is to find the logically closest UML element and/or re-

lation for any given ArchiMate element and/or relation. In other words, mapping shall

not be done in a “one element fits all” fashion, for example map all ArchiMate ele-

ments to the same kind of UML classifier, for example class.

ArchiMate to UML mapping Page 2

3 Acronyms and abbreviations

UML – Acronym for Unified Modeling Language. A widely spread and accepted

modeling language, primarily for defining architecture and design of IT systems.

RUP – Acronym for Rational Unified Process. A step-by-step process for devel-

opment of IT systems. RUP covers business modeling, requirements and architecture

of IT systems. RUP uses UML extensively for depicting views of different kinds.

BPMN – Acronym for Business Process Modeling and Notation. A widely spread

and used modeling language for describing business processes.

SAD – Acronym for Software Architecture Document. An architectural document

describing significant aspects of software. Described in detail in RUP.

4 ArchiMate concepts and layers

In ArchiMate there are three main layers and two extensions. The three main layers

are Business layer, Application layer and Technology layer. The extensions are Moti-

vation and Implementation and migration. The five layers/extensions are listed below

in a logical order, with the most strategic layer first and more realization related layers

below in a logical, consecutive order.

Motivation extension

The Motivation extension in ArchiMate shows the things that drive the whole evo-

lution of the organization´s architecture. In this layer we find things such as stake-

holders, drivers, goals etc., i.e. all the things that management persons need to be able

to discuss and plan a wanted scenario for the future.

Figure 1 ArchiMate specification for Motivation layer

Naturally, UML does not have similar concepts within this extension because of its

base in technology. Therefore the investigation has found that the most reasonable

UML element to map to ArchiMate motivation layer elements is the class element.

The class element must be regarded as the core of UML and it is probably also its

most widely used element type.

Business layer

The business layer in ArchiMate more practically shows things that the organiza-

tion offers to its end customers to be able to reach the goals in the Motivation layer. In

the business layer we see things such as values, products and contracts etc.

ArchiMate to UML mapping Page 3

Figure 2 ArchiMate specification for Business layer

In UML we see more natural mappings to the business layer in ArchiMate because

we start to reach the boundaries for what UML traditionally has tried to address. For

example we have the concept business actor in ArchiMate which naturally maps to

the RUP business actor. Therefore, all actor-oriented ArchiMate elements are rec-

ommended to map to the closely related UML element actor.

In the business layer in ArchiMate we also find a role concept. Since there is no

such thing in UML we recommend to use the default classifier class in UML for role-

related ArchiMate elements.

Collaborations as concept exist in both languages. Collaborations are packaging of

elements that together collaborate to create some kind of greater value than each ele-

ment can do of its own. The UML element that should be used to carry ArchiMate

collaborations is for natural causes the standard UML collaboration since they both

have similar meaning.

In the business layer we also see the concept interface in the ArchiMate element

business interface. Interfaces in both languages have the same meaning why it is natu-

ral to use the UML interface when mapping ArchiMate interfaces in general.

In this layer a “geographical” concept location is introduced. The closest UML el-

ement is the node element which in turn often has a physical relation in the real world

why it is chosen as the UML element to map to.

Processes do not exist in UML but they do in ArchiMate. The closest to process el-

ements in UML is the activity element why this should be the recommended element

to be used. However, activities require the context of activity containers and activity

diagrams and our ArchiMate diagram types are all based upon class diagrams. Hence,

the ArchiMate business process element is mapped to UML opaque behavior which is

the closest element type that allows itself to be added to class diagrams.

Business functions in ArchiMate are groupings of behavior based on a chosen set

of criteria. The options in UML are in this case the package or the collaboration ele-

ment. The package because the business function can be seen as a business unit and

therefore packages organizational elements such as roles or employees. However, the

package element does not describe dynamics why the recommended UML element

should be the collaboration which packages both structure and behavior.

Business interactions in ArchiMate show where the organization has interaction

with the outside world. Since these interactions follow a behavior unknown or unin-

teresting in detail the recommendation is to map this kind of element to the UML

ArchiMate to UML mapping Page 4

element type opaque behavior which set a name but otherwise abstracts all interior of

the behavior. The same UML classifier is used for the ArchiMate business event,

which also has behavior unknown in detail.

The ArchiMate business service is close to the RUP element business use case

which in turn is based upon the UML use case classifier why the recommendation is

to map ArchiMate business functions to UML use cases.

In ArchiMate, within the business layer, the business object is introduced. A busi-

ness object is an “information” or “conceptual” type of element that best maps to the

UML class which in turn is the UML type of element to carry information, often with

the help of so called attributes.

Representations in ArchiMate are perceivable form of information carried by busi-

ness objects. The thing that represent and hold information in the physical world in

UML are artifact, why they are chosen as the UML element for ArchiMate represen-

tation elements. Also products and contracts in ArchiMate map well to the UML

artifact element.

Finally we have two concepts that have no natural correspondence in UML –

meaning and value. Since these two concepts have no natural UML element to map to

we recommend to use the UML element class to map to these constructs.

Application layer

In the ArchiMate application layer we find software related constructs to support

the business we want to realize. Here we find things like application services, func-

tions and interfaces etc.

Figure 3 ArchiMate specification for Application layer

The ArchiMate application layer is one of the layers within ArchiMate with most

natural and best mapping to UML constructs, simply because UML in its nature has a

technical (software) focus.

In this layer we find the ArchiMate application component which is very close the

definition of the UML component. We also find application collaboration which

maps almost directly to the UML collaboration.

In the business layer section we said that interfaces in ArchiMate in general should

map to UML interfaces which we honor by mapping the ArchiMate application inter-

face to the UML interface as well. We also follow the same logic as in the business

ArchiMate to UML mapping Page 5

layer for functions and hence map the ArchiMate application function to UML col-

laborations and also map application interactions to UML opaque behavior.

In ArchiMate the application service functions as the externally visible functionali-

ty of systems. This gives that it should be mapped to UML use cases, since use cases

is just that – functionality offered to end users without the interior exposed.

At last we have the data object, which is close the UML classes why we recom-

mend to map ArchiMate data objects to UML classes.

Technology layer

In ArchiMate, the technology layer describes the needed infrastructure for realizing

the enterprise architecture migration. This layer mostly relates to the deployment view

or diagram in RUP SAD, but at a higher and more abstract strategic level.

Figure 4 ArchiMate specification for Technology layer

For natural reasons, there is a natural mapping between most ArchiMate elements

to UML in this layer. For example, the most significant ArchiMate element node

maps directly to its UML counterpart with the same name. The same direct mapping

should be made between the ArchiMate device to the UML device (even though their

internal meanings differ slightly).

ArchiMate´s system software element has its counterpart in UML in the execution

environment element due to the fact that system software can be viewed as an envi-

ronment for application execution.

In ArchiMate there exist elements that can be depicted as both graphical elements

as well as relations between elements. These elements are called network and commu-

nication path and both relate to UML´s structural element node as well as its relation

type communication path.

As before, ArchiMate functions and services map to UML collaboration and use

case respectively and hence infrastructure function should be mapped to the UML

collaboration and the infrastructure service is best mapped to UML use cases.

The ArchiMate artifact has a direct and natural relation to its UML counterpart

with the same name.

Implementation and migration layer

The implementation and migration layer in ArchiMate offers element types han-

dling the actual transformation of the organization´s architecture to a new and higher

level. There are no natural, direct mappings in the UML language of natural reasons,

but we can choose logical representations in UML to represent the elements in Ar-

chiMate.

ArchiMate to UML mapping Page 6

Figure 5 ArchiMate specification for Implementation and migration layer

A deliverable in ArchiMate is an outcome of a work package and a work package

in turn is a set of actions to accomplish a goal of some sort. The deliverable is best

mapped to the UML artifact by its nature and the work package is best mapped to the

UML opaque behavior due to its relation to actions (that are not seen or documented

in detail in the model).

Plateaus and gaps in ArchiMate have a close relationship in the fact that plateaus

depict exact levels of an architecture and the gaps show the differences between these

plateaus. Since plateau by itself is very abstract and does not have a natural corre-

sponding UML element it is recommended to use the UML class when mapping.

Gaps are in fact “documentation” of the difference between two plateaus why it is

recommended to use the UML artifact for mapping.

5 Relations and related topics

In ArchiMate there are twelve different kind of relations and many of them stem

from/are highly influenced by the UML language. Therefore there is an easy task to

map a lot of the relations, for example association, aggregation and composition.

However, there is a set of relations that do not map directly and an interpretation

had to be made, for example the ArchiMate access relation is mapped to the UML

usage and the ArchiMate derived relation is mapped to the UML dependency.

The junction concept in ArchiMate is semantically closest related to the UML de-

cision node, but since decision nodes can only exist within activities and ArchiMate is

“flat” in nature (see chapter Observations) the junction is mapped to the opaque be-

havior so that modeling can performed in the only-one-dimension.

Last but not the least we have an odd and hard-to-make mapping in the used by re-

lation in ArchiMate which has its closest relative in UML in the usage relation. Please

read the chapter Challenges in mapping to UML for details regarding the mapping

to this relation.

6 Observations

One major observation that has been made during the analysis of the ArchiMate

modeling language is that it, in comparison to UML, is “flat” in nature. This means

that when UML can have hierarchies of information (elements within packages, ac-

tions within activities etc), ArchiMate is “one-dimensional”. Notably, even the group-

ing element in ArchiMate is “flat”, i.e. cannot contain other elements “underneath” as

its counterpart package in UML. This is also the reason why we chose component as

base for the grouping element – this makes “flat modeling” easier in practice.

ArchiMate to UML mapping Page 7

7 Challenges in mapping to UML

Even though ArchiMate has had UML in mind when it was created, it has been

harder to map between the two notations than anticipated.

One thing is that the ArchiMate specification (the “meta model”) is much less rigid

and less documented than its counterpart “the UML specification”. This has the effect

that a lot of the interpretation is shifted to the skill, knowledge and experience of the

reader. Hopefully we have done the correct assumptions during the mapping process

to UML, but the specification still has a lot to wish for.

Another thing is that direct errors were found in the ArchiMate specification, in

this case an ArchiMate “role name” at one instance was placed on the wrong side of

the association which made the interpretation impossible. This was handled by simply

reading the specification “the opposite way” and the way it was probably intended.

Even though a way around was found for this problem it is still unsatisfying to rely

your work on “work arounds” just to get it work.

A third thing to mention is the illogical and reverse interpretation of the ArchiMate

relation used by which has an opposite naming than its UML counterpart usage. It

may not sound a lot, but to say “used by” has another actor than “usage”. A car may

be used by its driver but it is the driver that uses (usage) the car. This totally different

set of mind is problematic once you are accustomed with UML – you need to reverse

all usage relations when you apply ArchiMate used by relations.

8 Deviations from the ArchiMate specification

ArchiMate symbols come in two flavors – “pure symbol presentation” or “rectan-

gular presentation”. The pure symbol presentation presents the ArchiMate elements

with a graphic on a transparent background and the rectangular presentation presents

elements with a rectangular background with a small symbol up to the right. Some of

the rectangles in the specification have “cut corners” and some have not – they are

just rectangles. The Papyrus add-in supports both pure symbol presentation and rec-

tangular presentation. However, due to limitations in Papyrus, the cut corners are not

offered.

Relations in ArchiMate are sometimes rendered solid and sometimes dotted or

dashed. In cases where the base relation type (UML) is dotted/dashed and the Archi-

Mate relation type based upon this UML relation type is solid, the add-in does not set

the presentation to solid because of an exception thrown by Papyrus when saving

diagrams as images. The ArchiMate relations related to this are triggering, used by

and assignment.

Often relations have end decorations (“arrow heads”), both in UML and in Archi-

Mate. However, UML does not have small “filled” end decorations as ArchiMate

have on some relations and there is no way to customize Papyrus to reflect this.

Therefore, the following ArchiMate relations do not have the correct kind of end dec-

oration: access, flow, influence.

ArchiMate to UML mapping Page 8

Appendix A – Complete mapping ArchiMate to UML

This appendix shows the complete list of recommended mappings between

ArchiMate and UML based upon the findings made during the investigation

mentioned in this whitepaper.

Motivation layer

ArchiMate element UML meta class

Assessment Class

Goal Class

Principle Class

Stakeholder Class

Driver Class

Requirement Class

Constraint Class

Business layer

ArchiMate element UML meta class

Business actor Actor

Business role Class

Business collaboration Collaboration

Business interface Interface

Location Node

Business process OpaqueBehavior

Business function Collaboration

Business interaction OpaqueBehavior

Business event OpaqueBehavior

Business service UseCase

Business object Class

Representation Artifact

Meaning Class

Value Class

Product Artifact

Contract Artifact

Application layer

ArchiMate element UML meta class

Application component Component

Application collaboraration Collaboration

Application interface Interface

Application function Collaboration

Application interaction OpaqueBehavior

Application service UseCase

Data object Class

ArchiMate to UML mapping Page 9

Technology

ArchiMate element UML meta class

Node Node

Device Device

System software ExecutionEnvironment

Infrastructure interface Interface

Network CommunicationPath, Node

Communication path CommunicationPath, Node

Infrastructure function InfrastructureFunction

Infrastructure service InfrastructureService

Artifact Artifact

Implementation and migration

ArchiMate element UML meta class

Deliverable Artifact

Gap Artifact

Plateau Class

Work package OpaqueBehavior

Relationships and packaging elements

ArchiMate relation UML meta class

Access Usage

Flow InformationFlow

Specialization Generalization

Triggering InformationFlow

Used by Usage

Composition Association

Aggregation Association

Realization Realization

Derived Dependency

Assignment Dependency

Association Association

Junction OpaqueBehavior

Grouping Component

Influence Dependency

